Abstract

BackgroundThere is increasing evidence indicating an aberrant expression of miRNAs in colorectal cancer (CRC) development. Growing evidence has suggested that polyunsaturated fatty acids (PUFAs) could modulate the remodeling of the epigenome. No study has yet been published to examine the direct effect of PUFA on the promoter methylation of miRNAs. This study aimed to examine the potential clinical application of PUFA on the promoter DNA methylation of miR-126 and its angiogenic target molecule (VEGF) in the CRC cells.MethodsWe investigated the direct effect of 100 μM EPA, DHA, and LA for 24 h on promoter methylation status of miR-126 in a panel of five CRC cell lines (HCT116, HT29/219, Caco2, SW742, and LS180) by methylation-specific PCR (MSP). We also quantified the miR-126 and VEGF transcript expression levels in five CRC cell lines affected by PUFA by real-time PCR. Moreover, we analyzed the protein expression level of VEGF, as a target of miR-126, by western blotting assay.ResultsMSP analysis showed extensive DNA methylation of the miR-126 promoter in all five CRC cell lines, and among all three PUFAs, only DHA completely demethylated the promoter of miR-126 in HCT116 and Caco2 cell lines. We found that only DHA significantly induces the expression level of miR-126 in HCT116 and Caco2 cell lines, respectively, by 20.1-fold and 1.68-fold (p < 0.05). Our finding indicates that the downregulation of VEGF protein level is also effectively observed only in DHA-treated HCT116 and Caco2 cells compared to control cells (p < 0.05).ConclusionsOur results provide evidence that n-3 PUFAs are able to modulate cellular miR-126 DNA methylation and inhibit VEGF expression level in a cell-type specific manner in colorectal cancer cells. DHA always showed higher efficacy than EPA and LA in our experiment. Overall, our results suggest a potential clinical application of n-3 PUFAs as anti-angiogenic agents in CRC therapy.

Highlights

  • There is increasing evidence indicating an aberrant expression of miRNAs in colorectal cancer (CRC) development

  • Impact of Polyunsaturated fatty acids (PUFA) on promoter methylation of miR-126 in CRC cell lines To study the impact of PUFA on DNA methylation, we analyzed the effect of PUFA on promoter methylation status of miR-126 in 5 CRC cell lines by methylation-specific PCR (MSP)

  • Among all three PUFAs, only Docosahexaenoic acid (DHA) completely demethylated the promoter of miR-126 in HCT116 and Caco2 cell lines as compared to the control BSA only-treated cells (Fig. 1)

Read more

Summary

Introduction

There is increasing evidence indicating an aberrant expression of miRNAs in colorectal cancer (CRC) development. The precise mechanism by which dietary PUFAs mediate epigenetic modifications in human cells is not fully demonstrated, and to our best knowledge in scientific literature, no published studies have yet examined if PUFAs can directly affect the alteration promoter methylation of miRNAs. We hypothesize that PUFAs can influence miR-126 gene expression through modulating its promoter methylation. We hypothesize that PUFAs can influence miR-126 gene expression through modulating its promoter methylation For this purpose, we investigated the direct effect of n-3 and n-6 PUFAs on promoter methylation status of epidermal growth factor-like domain 7 gene (EGFL7), the host gene of miR-126, and protein expression level of VEGF, as a well target of miR-126, in a panel of five well-characterized colorectal cancer cell lines

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.