Abstract

The objective of this study was to investigate the effect of dietary quorum quenching bacterium Bacillus cereus QSI-1 on skin mucus protein pattern and innate immune response in Crucian Carp (Carassius auratus gibelio). The differential proteomes of skin mucus of Crucian Carp were analyzed after administration of Bacillus cereus QSI-1 by isobaric tags for relative and absolute quantitation (iTRAQ) labeling, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1974 proteins were quantified. Using a 1.5-fold change in expression as a physiological significant benchmark, 264 differentially expressed proteins were reliably quantified by iTRAQ analysis, including 130 up- and 134 down-regulated proteins after dietary Bacillus cereus QSI-1. Some Proteins that were involved in immunity included protein S100, annexin, histone H3, lymphocyte cytosolic protein 1, heat shock protein, L-plastin, keratin 91, etc. Furthermore, fish fed 5 × 108 CFU/g Bacillus cereus QSI-1 supplemented diet showed an increase in alternative complement activity and lysozyme activity but expressed a decrease in superoxide dismutase activity in skin mucus (P < 0.05). However, administration of Bacillus cereus QSI-1 had no significant effects on total immunoglobulin level (P > 0.05). These results demonstrated that dietary administration of Bacillus cereus QSI-1 affects skin mucus protein profile and innate immune response in Crucian Carp, and also can enhance the disease resistance of Crucian Carp against A. hydrophila. This is the first report on proteomics analysis of skin mucus proteins in Crucian Carp after administration of quorum quenching bacterium Bacillus cereus, and the results will help to understand the mucosal immune responses to probiotics at the protein level in fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call