Abstract

The Dickkopf family of proteins is comprised of four members (Dkk1, Dkk2, Dkk3, Dkk4) that are known to modulate Wnt/β-catenin signaling, which is activated during bone formation. Although the effects of Dkk1 on Wnt/β-catenin signaling have been well studied, little is known about the effects of Dkk4. Therefore, to evaluate the role of Dkk4 in osteoblastogenesis, we used the mouse osteoblastic cell line MC3T3-E1, in which Dkk4 expression was suppressed by small interfering RNA knockdown. Our results showed that the suppression of Dkk4 expression promoted osteoblast proliferation and differentiation and suppressed apoptosis. In colony-forming unit alkaline phosphatase assay, Dkk4 knockdown cells possessed markedly higher alkaline phosphatase activity compared with Dkk1 knockdown cells. Reduced Dkk4 expression also led to the up-regulation of β-catenin levels, β-catenin/T cell factor activity, and Wnt-target genes. In contrast, overexpression of Dkk4 in MC3T3-E1 cells led to inhibition of osteoblast differentiation. Our findings reveal that Dkk4 functions as an inhibitor of osteoblastogenesis through Wnt/β-catenin signaling, providing new insights into the relationship between Wnt/β-catenin signaling and Dkk4 in bone formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.