Abstract

Ischemia/reperfusion (I/R) induced ovarian damage is caused by various diseases such as ovarian torsion, ovarian transplantation, cardiovascular surgery, sepsis, or intra-abdominal surgery. I/R-related oxidative damage can impair ovarian functions, from oocyte maturation to fertilization. This study investigated the effects of dexmedetomidine (DEX), which has been shown to exhibit antiapoptotic, anti-inflammatory, and antioxidant effects, on ovarian I/R injury. We designed four study groups: group 1 (n = 6): control group; group 2 (n = 6): only DEX group; group 3 (n = 6): I/R group; group 4 (n = 6): I/R + DEX group. Then, ovarian samples were taken and examined histologically and immunohistochemically, and tissue malondialdehyde (MDA) and glutathione (GSH) levels were measured. In the I/R group MDA levels, caspase-3, NF-κB/p65, 8-OHdG positivity, and follicular degeneration, edema, and inflammation were increased compared to the control group (p = 0.000). In addition, GSH levels were significantly decreased in the I/R group compared to the control group (p = 0.000). On the other hand, in the I/R + DEX treatment group MDA levels, caspase-3, NF-κB/p65, 8-OHdG positivity, follicular degeneration, edema, and inflammation findings were decreased than in the I/R group (p = 0.000, p = 0.005, p = 0.005, p = 0.001, p = 0.005, respectively). However, GSH levels increased significantly in the I/R + DEX treatment group compared to the I/R group (p = 0.000). DEX protects against ovarian I/R injury through antioxidation and by suppressing inflammation and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call