Abstract

The induction of hepatic cytochrome P450 (CYP) enzymes, conjugating enzymes, and drug transporters involved in the phase I–III metabolism of xenobiotics is frequently encountered in pre-clinical drug safety studies. As xenobiotics, new drug entities can serve as ligands to three major nuclear receptors; the aryl hydrocarbon receptor (AhR), the constitutive androstane receptor (CAR), and the pregnane X receptor (PXR). These act as xenosensors that often coordinate gene expression with several other nuclear receptors normally involved in endobiotic metabolism. A subsequent gene activation cascade can result in altered liver weights and histopathology and, in some cases, reduced therapeutic efficacy if the drug under test is also a substrate for the induced metabolic enzymes. In humans, CYP induction can result in therapeutic failure for autoinducers or drug–drug interactions if the pharmacokinetic and pharmacodynamic properties of co-administered drugs are altered because they are substrates for the induced enzymes. In addition to CYP gene expression, nuclear receptor proteins regulate the expression of complex gene networks, and therefore mediate the metabolism and modify the effects of steroid hormones, fat-soluble vitamins, and free fatty acids on the metabolic, reproductive, and developmental processes of mammals. CAR and PXR also regulate hepatic energy metabolism through cross-talk with insulin- or glucagon-responsive transcription factors. This review examines the perturbation of these endogenous regulatory systems by xenobiotic CYP inducers, which have potential pathophysiological consequences ranging from alterations in the biological clock to adverse effects on the cardiovascular system of pre-clinical species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call