Abstract

The dev 1510 mutant of Dictyostelium discoideum differs from the wild type in that unaggregated cells are capable of differentiating into either spores or stalk cells depending on the culture conditions (12). Taking advantage of this fact, the effects of cyclic AMP (cAMP) on differentiation of the mutant cells were examined under conditions that prevent normal morphogenesis. In the presence of low concentrations of exogenous cAMP, the cells differentiated into only stalk cells, whereas in the presence of high concentrations they differentiated into only spores. Untreated cells formed stalk cells, but this was inhibited by addition of phosphodiesterase, indicating that it was induced by a low concentration of cAMP which they produced themselves. Cyclic GMP and dibutyryl cAMP also induced spore formation though less effectively, while 5'AMP, ADP and ATP had no effect. During development, the cells increased in sensitivity to cAMP in that spore formation was induced at lower concentration of cAMP after 4 hr of starvation. Treatment of cells that had been starved for 6hr with 10-4 M cAMP for as short a time as 30 min was enough to induce 8% of the cells to form spores. The effects on cAMP-induced differentiation of chemicals that are known to influence development of the wild type were also examined. Both NH4 Cl and KCl inhibited cAMP-induced stalk formation, but had no effect on spore formation. In the presence of arginine, spore formation was induced at a lower concentration of cAMP with higher efficiency. CaCl2 , LiCl and KF had no effect on cAMP-induced differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call