Abstract

Fumonisins are mycotoxins produced primarily by Fusarium verticillioides and Fusarium proliferatum on maize. These are secondary, carcinogenic metabolites and have been reported on maize worldwide. Field trials were conducted during 2010/2011 and 2011/2012 in six diverse maize production areas of South Africa to study the efficacy of an existing prophylactic fungicide regime for the control of foliar diseases, on the infection of grains of seven cultivars by fumonisin producing Fusarium spp. and fumonisin synthesis. Seven cultivars were selected to include both yellow and white, Bt and non-Bt and regionally adapted varieties. Azoxystrobin + difenoconazole (strobilurin, 200 g/L + triazole, 125 g/L) was applied 40–45 days after planting followed by flusilazole + carbendazim (silicone triazole, 125 g/L + benzimidazole, 250 g/L) with petroleum as adjuvant, 28–30 days later. Fumonisins in harvested kernels were analysed using High Performance Liquid Chromatography (HPLC) and fumonisin producing Fusarium spp. were quantified by means of quantitative Real Time PCR (qPCR). Mean natural colonisation of maize kernels by fumonisin producing Fusarium spp. was highest at Makhathini (33,696 pg/0.5 g of milled maize kernels) and the lowest at Potchefstroom (179 pg/0.5 g of milled maize kernels). Cultivars differed in susceptibility to fungal colonisation and fumonisin synthesis with PAN6P-110, DKC80-10 and CRN3505 proving most susceptible and LS8521B and DKC78-15B most resistant. Mean fumonisin contamination was highest at Makhathini (23.62 ppm) and lowest at Buffelsvlei (1.50 ppm). Analysis of variance showed no significant differences in colonisation of grain by fumonisin producing Fusarium spp. between sprayed and control treatments. Sprayed treatments had significantly higher fumonisin levels compared with unsprayed treatments. A highly significant cultivar × environment interaction was recorded for fungal colonisation. Highly significant environment×fungicide-treatment×cultivar interactions were recorded for fumonisin production. The strong interaction between cultivar and environment may be due to cultivar adaptation/behaviour under different environmental conditions. The use of a prophylactic fungicide spray regime for control of leaf diseases in maize did not reduce Fusarium ear rot in maize, however, significantly elevated fumonisin levels were recorded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.