Abstract

This paper experimentally investigates the cracking behavior of rock-like specimens containing artificial open flaws under uniaxial compressive loads. The present experiments mainly focus on the effects of crack openings on crack propagation and coalescence behavior in rock-like materials under uniaxial compression. The real-time crack coalescence processes in the specimens with different crack openings are analyzed. The experimental results show that the crack openings significantly affect the crack initiation stresses and the crack initiation modes. The initiation stresses of wing cracks and coplanar secondary cracks decrease with increasing crack openings. However, the initiation stress of anti-wing cracks increases with increasing crack openings. Moreover, five types of crack coalescence in the specimens containing three pre-existing open flaws under uniaxial compression are observed. The effects of crack openings on the mechanical properties of rock-like materials, which include the complete axial stress–strain curves, peak stresses, peak strains and initiation stresses, are investigated in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call