Abstract

The Bödewadt boundary-layer flow is induced by the rotation of a viscous fluid rotating with a constant angular velocity over a stationary disk. In this paper, the Bödewadt boundary-layer flow has been studied in the presence of the Coriolis force to observe the effect of radial stretch of the lower disk on the flow. For the first time in the literature, a numerical investigation of the effects of both stretching mechanism and the Coriolis force on the flow behaviour and on the convective instability characteristics of the above flow has been carried out. In this paper, the Kármán similarity transformations have been considered in order to convert the system of PDEs representing the momentum equations of the flow into a system of highly non-linear coupled ODEs and solved numerically to obtain the velocity profiles of the Bödewadt flow. Then, a convective instability analysis has been performed by using the Chebyshev collocation method in order to obtain the neutral curves. From the neutral curves it is observed that radial stretch has a globally stabilising effect on both the inviscid Type-I and the viscous Type-II instability modes. This underlying physical phenomena has been verified by performing an energy analysis of the flow. The results obtained excellently supports the previous works and will be prominently treated as a benchmark for our future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call