Abstract

The industrial trials of two cooling modes, i e, water cooling in forepart + air cooling in later part (WAC) and air cooling in forepart + water cooling in later part (AWC), were carried out for a Ti-Nb microalloyed steel. The average cooling rates and coiling temperature were the same for two modes. The continuous cooling transformation (CCT) curve of the tested steel was drawn. The effects of the cooling mode on the microstructure, precipitates, and properties of the steels were investigated. Results show that the strength of the steel in the WAC mode is significantly larger than that in the AWC mode, mainly because the smaller the grain size, the more and finer the grain precipitates. Therefore, when the average cooling rate is constant, the fast cooling in the forepart is an effective method to increase the strength of steels. However, the increase in the strength is accompanied by the decrease in toughness, so that the toughness of the steel should be considered when changing the cooling mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.