Abstract

Turning the body towards a new direction is normally achieved via a top-down synergy whereby gaze (eye direction in space) leads the upper body segments, which in turn lead the feet. These anticipatory eye movements are observable even in darkness and constraining the initial eye movements modifies the stereotyped top-down reorientation sequence. Our aim was to elucidate the relative contributions of vision and eye movements to whole-body coordination during large standing turns by observing the effects of separately removing visual information or suppressing eye movements throughout the turn. We predicted that constraining eye movements would modify the steering synergy, whereas removing vision would have little effect. We found that preventing eye movements modified both timing and spatial characteristics of axial segment and feet rotation. When gaze was fixed, gait initiation, but not axial segment rotation, was delayed in comparison to both full vision and no vision turns. When eye movements were prevented, the predictable relationship between the extent head rotation led the body and peak head angular velocity was abolished suggesting that anticipatory head movements normally subserve gaze behaviour. In addition, stepping frequency significantly reduced during the gaze fixation condition but not during the no-vision condition, suggesting that oculomotor control is linked to stepping behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call