Abstract

In this study, the effect of composition on solid state sintering of tungsten-brass was carried out. The densification of W-Cu has been a difficult problem to the materials engineers. However, the densification behaviour of tungsten-brass in the solid and liquid state is still not known. Tungsten-brass with the composition of 50W-brass, 60W-brass, 70W-brass and 80W-brass were sintered in a horizontal tube furnace under pure hydrogen environment at the temperature of 900°C and the relative sintered density, hardness, electrical conductivity and microstructural characterization was carried out. The relative sintered density and the electrical conductivity increase with the increase in the volume fraction of the matrix (brass) while the hardness decreases with the increase in the volume fraction of brass. The sample with the lowest volume fraction of W has the highest relative sintered density (71%) while the one with the highest volume fraction of W has the lowest relative sintered density (66%). The microstructure of the samples was not homogeneous due to mutual immiscibility between W and brass and lack of capillary force to enhance rearrangement and distribution of W and brass. It is obvious from the results that solid state sintering cannot give full densification of tungsten-brass composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.