Abstract

We study the effects of common reservoirs on the performance of an autonomous three-level quantum refrigerator. We show that the common reservoirs can result not only in additional transitions but also different types of interferences between them. For the case that the sole object to be cooled is a cold reservoir, it turns out that the cooling power can be greatly enhanced by the common reservoirs as well as by the induced interference. For the configuration that the refrigerator acts on both the cold reservoir and a qubit, we find that though the common reservoirs can improve the cooling power, which instead is detrimental to the cooling of the qubit. The interference also manifests different effects on the cooling of the cold reservoir and the qubit. Our results provide an evidence of possibility on applying the common reservoirs to enhance the performance of the refrigerator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.