Abstract

The role of fibrillar collagen on myogenic differentiation has previously been studied in tissue culture cell lines but has not been studied in situ. We treated cultured chick and mouse embryos with collagen synthesis inhibitors to determine the role of fibrillar collagen on somitogenesis and on myogenic differentiation in vivo. Stage 12 chick embryos and 8.7 dpc mouse embryos were cultured incontrol medium or a range of concentrations of the collagen synthesis inhibitors ethyl-3, 4-dihydroxybenzoate (EDHB) or cis-hydroxy-proline (CHP). Chick embryos were cultured for 24h and mouse embryos were cultured for 30h. Both collagen synthesis inhibitors produced a range of somite abnormalities including formation of fewer and irregular somites in both chick and mouse at high drug concentrations, as well as formation of double somites in EDHB-treated chick embryos. Examination of EDHB-treated mouse embryos by scanning electron microscopy demonstrated a dosage-dependent loss of fibrillar collagen and associated extracellular matrix. Expression of myogenin in EDHB-treated mouse embryos, examined by whole-mount in situ hybridization, was suppressed at higher dosage levels. This study suggests that inhibition of fibrillar collagen production and/or loss of fibrillar collagen in the developing avian and mammalian embryo results in abnormal somite formation and perturbed myogenic differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.