Abstract

Abstract The effect of fast-neutron irradiation on void formation in Type 316 stainless steel having undergone specific thermalmechanical treatments was investigated by transmission electron microscopy. The study showed that, for irradiation at the three lower temperatures (420, 475 and 580°C): (1) the void volume decreased with increasing cold work; (2) the reduction in swelling was due to a decrease in both void-number density and void size; (3) the decrease in void size with increasing cold-work level was enhanced at higher irradiation temperatures; (4) cold working from 0 to 10% decreased the voidnumber density, and void volume, more than in the range from 10 to 20%; (5) void formation in the 20% cw steel which had been heat treated 100 h at 650°C before irradiation was similar to that of the solution-treated steel. The temperature dependence of swelling of the cold-worked material was different from that of the solution-treated steel. Irradiation at 650°C resulted in a larger void volume in the cold-worked material than for irradiation at 475 or 580°C. The effects of cold work and irradiation temperature on void growth are consistent with the predictions of a diffusion-controlled model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.