Abstract

Antifoulants such as copper pyrithione (CuPT) and zinc pyrithione (ZnPT) are widespread and hazardous pollutants in aquatic environments. The presence of microplastics (MPs) introduces significant uncertainty regarding the toxicity of CuPT and ZnPT, as their effects can be influenced by MPs. There is a limited understanding of the toxic potential of CuPT and ZnPT when they coexist with MPs. Here, the marine mysid Neomysis awatchensis was treated using no observed effect concentration (NOEC) values of CuPT and ZnPT premixed with MPs (1 µm; 1-100 particles mL-1). The presence of MPs increased the toxicity of the antifoulants in juvenile and adult mysids over 96 h. The additive effect of the MPs varied by chemical; feeding was only reduced by CuPT with MPs, whereas no fluctuation in feeding was observed in response to ZnPT with MPs. Co-exposure to antifoulants and MPs increased malonaldehyde levels, but the response of antioxidant components varied by chemical. In mysids co-exposed to CuPT and MPs, the activity levels of catalase and superoxide dismutase were decreased, whereas their enzymatic activity levels were elevated by co-exposure to ZnPT and MPs. Similarly, depletion of glutathione (GSH) was observed in mysids co-exposed to CuPT and MPs, with significant reductions in GSH reductase (GR) and peroxidase (GPx). However, the GSH level was increased by co-exposure to ZnPT and MPs, with elevations in GR and GPx activity levels. Significant inhibition of acetylcholinesterase activity was only observed in response to CuPT and MPs. These results suggest that MPs can increase toxicity via additive and/or synergistic effects through oxidative imbalance, but these effects of MPs can vary with different chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.