Abstract

Abstract The effects of changes in climate on aquifer storage and groundwater flow to rivers have been investigated using an idealized representation of the aquifer/river system. The generalized aquifer/river model can incorporate spatial variability in aquifer transmissivity and is applied with parameters characteristic of Chalk and Triassic sandstone aquifers in the United Kingdom, and is also applicable to other aquifers elsewhere. The model is run using historical time series of recharge, estimated from observed rainfall and potential evaporation data, and with climate inputs perturbed according to a number of climate change scenarios. Simulations of baseflow suggest large proportional reductions at low flows from Chalk under high evaporation change scenarios. Simulated baseflow from the slower responding Triassic sandstone aquifer shows more uniform and less severe reductions. The change in hydrological regime is less extreme for the low evaporation change scenario, but remains significant for the Chalk aquifer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.