Abstract

The hypothalamic–pituitary–adrenal (HPA) axis mediates the physiological response to stressors and also synchronizes different physiological systems to environmental cues. Changes in day length (i.e., photoperiod) as well as chronic exposure to stressors are known to impact the HPA axis activity regulating the levels of glucocorticoid hormones. Over-exposure to inappropriate levels of glucocorticoids has been implicated in increased disease risk. In the present study, we examined the impact of chronic stress, using a chronic variable stress (CVS) paradigm, in combination with changes in photoperiod on physiological and behavioral measures, as well as on the reactivity and regulation of the HPA axis, in male and female mice. Six weeks of CVS, regardless of the photoperiod condition, decreased the body weight and attenuated the HPA axis reactivity to an acute stressor in both sexes. The attenuated HPA axis reactivity observed in stressed animals was related to reduced Pro-opiomelanocortin (POMC) mRNA levels in the pituitary of females. The gene expression analyses of key regulators of the HPA axis also indicated a sex-dependent effect with opposite patterns in the pituitary and adrenal glands. CVS effects on behavior were limited and related to an anxiety-like phenotype in both sexes, regardless of photoperiod condition. Our findings highlight sex-specific differences in the HPA axis and also sex-dependent effects of CVS on physiological parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call