Abstract

Hot cracking susceptibility of Haynes® 282® with varying amount of C (0.05–0.09 wt%), Mn (0.03–0.12 wt%), Si (0.03–0.16), B (0.005–0.006 wt%) and Zr (0–0.01) are investigated. Synergistic role of C and B is found on solidification and heat affected zone (HAZ) liquation cracking susceptibility. High amount of C and B promote formation of eutectic constituents during final stages of solidification and promote crack healing by backfilling effect. When C and B are added in low amount the crack healing does not occur due to the absence of eutectic consituents therefore cracking extent increases. Thermodynamics simulations indicate C and B tie up to MC carbides and M3B2 borides during solidification. Scanning Electron Microscopy and Nanoscale secondary ion mass spectrometry analysis reveal C and B to be present both in solid solution and in form of precipitates to Ti-Mo rich carbides and Mo rich borides, respectively. In HAZ, these phases promote liquation cracking where cracking extent correlates to the amount carbides and borides. Lower C and B is found to reduce the liquation cracking in the HAZ. Furthermore, a high temperature homogenization heat treatment at 1190 °C excarbates the cracking by dissolving the borides and releasing B to the grain boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call