Abstract
The effects of ring substitution on the pK(a) value of benzenesulfonic acid (BSA) were investigated using a combined quantum mechanical and classical approach. Ring substitution with strong electron-withdrawing elements such as F, Cl, and Br is found to enhance the acidity of the BSA. More importantly, ring substitution with -NO(2) groups which form an extended conjugated pi-system with the benzene ring exhibits the strongest enhancement of the acidity. The effects of polymerization on the styrenesulfonic acid (SSA) were also investigated by solving the classical Poisson-Boltzmann equation. It is found that polymerization significantly decreases the acidity of SSA due to the alteration of the electrostatic environment surrounding the acid group upon polymerization. The average pK(a) value converges to 2.9 from the corresponding monomer value of -0.53 at a degree of polymerization of 8-12. These results shed significant light on how to design sulfonic-acid-based solid acid catalysts to achieve desired catalytic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.