Abstract
Identifying the production dates of historical manuscripts is one of the main goals for paleographers when studying ancient documents. Automatized methods can provide paleographers with objective tools to estimate dates more accurately. Previously, statistical features have been used to date digitized historical manuscripts based on the hypothesis that handwriting styles change over periods. However, the sparse availability of such documents poses a challenge in obtaining robust systems. Hence, the research of this article explores the influence of data augmentation on the dating of historical manuscripts. Linear Support Vector Machines were trained with k-fold cross-validation on textural and grapheme-based features extracted from historical manuscripts of different collections, including the Medieval Paleographical Scale, early Aramaic manuscripts, and the Dead Sea Scrolls. Results show that training models with augmented data improve the performance of historical manuscripts dating by 1% - 3% in cumulative scores. Additionally, this indicates further enhancement possibilities by considering models specific to the features and the documents' scripts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.