Abstract

Gas turbines in integrated gasification combined cycle power plants burn a fuel gas (syngas (SG)) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may differ significantly from those in natural gas (NG). Such differences can yield changes in the temperature, pressure, and corrosive species that are experienced by critical components in the hot gas path, with important implications for the design, operation, and reliability of the turbine. A new data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle, with emphasis on the hot gas path components. The approach used allows efficient handling of turbine components and variable constraints due to fuel changes. Examples are presented for a turbine with four stages, in which the vanes and blades are cooled in an open circuit using air from the appropriate compressor stages. For an imposed maximum metal temperature, values were calculated for the fuel, air, and coolant flow rates and through-wall temperature gradients for cases where the turbine was fired with NG or SG. A NG case conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points indicated that this is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case to comply with the imposed temperature constraints. Thus, for that case, the turbine size would be different for SG than for NG. A second series of simulations examined scenarios for maintaining the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) used for the SG simulations. In these, the inlet mass flow was varied while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effects of turbine matching between the NG and SG cases were increases—for the SG case of approximately 7% and 13% for total cooling flows and cooling flows for the first-stage vane, respectively. In particular, for the SG case, the vanes in the last stage of the turbine experienced inner wall temperatures that approached the maximum allowable limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call