Abstract

AbstractThe effects of cathodic protection potential, corrosion products and stress ratio on corrosion fatigue crack growth rate have been studied on offshore structural steels. These materials were cathodically polarised in seawater and 3% sodium chloride solution at three potentials of ‐0.8, ‐1.0 and ‐1.1 V(SCE). The corrosion fatigue crack growth rate in seawater was greater than that in air and increased with more negative potentials. The maximum acceleration of crack growth rate in seawater was observed at the crack growth plateau which was independent of ΔK. Calcareous deposits precipitated within the cracks resulted in an increase of crack opening level and contributed to a reduction of the corrosion fatigue crack growth rate. Such a corrosion‐product‐wedging effect could be evaluated by using an effective stress intensity range, ΔKeff. The estimation of corrosion fatigue crack growth rate in terms of ΔKeff clarified the effect of hydrogen embrittlement under a cathodic potential. Thus the processes of cracking in seawater at cathodic potentials resulted from mechanical fatigue and hydrogen embrittlement with calcareous deposits reducing the crack growth rate. All these three mechanisms were mutually competitive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call