Abstract

To systematically investigate in normal-hearing listeners the effects of decreased audibility produced by broadband noise masking on the cortical event-related potentials (ERPs) N1, N2, and P3 to the speech sounds /ba/ and /da/. Ten normal-hearing adult listeners actively (button-press response) discriminated the speech sounds /ba/ and /da/ presented in quiet (no masking) or with broadband masking noise (BBN), using an ERP oddball paradigm. The BBN was presented at 50, 60, and 70 dB SPL when speech sounds were presented at 65 dB ppe SPL and at 60, 70 and, 80 dB SPL when speech sounds were presented at 80 dB ppe SPL. On average, the 50, 60, 70, and 80 dB SPL BBN maskers produced behavioral threshold elevations of 18, 25, 35, and 48 dB (average for 250 to 4000 Hz), respectively. The BBN maskers produced significant decreases (relative to quiet condition) in ERP amplitudes and behavioral discriminability. These decreases did not occur, however, until the noise masker intensity (in dB SPL) was equal to or greater than the speech stimulus intensity (in dB ppe SPL), that is, until speech to noise ratios (SNRs) were < or = 0 dB. N1 remained present even after N2, P3, and behavioral discriminability were absent. In contrast to amplitudes, ERP and behavioral latencies showed significant decreases at higher (better) SNRs. Significant latency increases occurred when the noise maskers were within 10 to 20 dB of the stimuli (i.e., SNR < or = 20 dB). The effects of masking were greater for responses to /da/ compared with /ba/. Latency increases occurred with less masking for N1 than for P3 or behavioral reaction time, with N2 falling in between. These results indicate that decreased audibility as a result of masking affects the various ERP peaks in a differential manner and that latencies are more sensitive indicators of these masking effects than are amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.