Abstract
The effects of braking of trains and roughness of rails on the dynamic behavior of bridges are studied. The train-bridge interaction is considered by solving Lagrange's equation of motions. Newmark's direct integration is used to solve the governing equations. Dynamic train loads acting on piers at each time step are evaluated, and the wheel-rail roughness effect is considered by using the PSD curve of the rail. The model of braking forces in bridge section is based on the change of deceleration mentioned in ASTM(American Society for Testing and Materials) E503-82. Only skidding frictions without considering rolling frictions are modeled, and the friction coefficient of 0.25 is assumed. Parametric studies in a simply supported PC Box girder bridge are carried out to verify the present method and to analyze the effects of train speed, wheel-rail roughness, braking forces on dynamic train loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.