Abstract

(-)-Noradrenaline and (-)-CGP12177 activate beta(1)-adrenoceptors through a high (H)- and low-affinity (L) site, respectively. The positive inotropic effects of (-)-noradrenaline are blunted by phosphodiesterase4 (PDE4) but not PDE3, while both PDE isoenzymes, acting in concert, prevent the effects of (-)-CGP12177 through beta(1)-adrenoceptors in rat ventricle. We sought to unravel the role of PDE3 and PDE4 on signals through the H and L sites in human myocardium. The kinetics of matching positive inotropic effects of (-)-noradrenaline (20 nM) and (-)-CGP12177 (100 nM) were investigated on human atrial trabeculae in the absence and presence of the PDE3 inhibitor cilostamide (300 nM), PDE4 inhibitor rolipram (1 microM) or both. The influence of cilostamide and rolipram on agonist-evoked cyclic adenosine monophosphate (cAMP) increases were also compared in Chinese hamster ovary (CHO) cells expressing recombinant human beta1 -adrenoceptors. (-)-Noradrenaline and (-)-CGP12177 caused matching inotropic responses that faded during a 60-min time course. Cilostamide, but not rolipram, increased the positive inotropic effects and abolished the time dependent fade of both agonists. In CHO cells, rolipram, but not cilostamide, enhanced the cAMP signals caused by both (-)-noradrenaline and (-)-CGP12177. PDE3, but not PDE4, blunts the positive inotropic effects of both (-)-noradrenaline and (-)-CGP12177 through H and L sites, respectively, of human atrial beta1 -adrenoceptors. However, in CHO cells, PDE4 blunts the cAMP signals of both (-)-noradrenaline and (-)-CGP12177. Neither CHO cells nor the rat ventricle are appropriate models for the beta1 -adrenoceptor-evoked signalling to PDE3 observed in human atrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call