Abstract

Forty percent of patients with a spinal cord injury acquire a pressure ulcer during rehabilitation, and sixty percent of individuals in elderly care facilities have at least one pressure ulcer upon admittance. A commonality between those populations is the increased amount of time they spend in the seated position. The loading on the buttocks and thighs while in the seated position has been cited as a risk factor for pressure ulcer formation, especially for wheelchair users. Finite element models provide a tool with which to evaluate the internal tissue stresses, but they are reliant upon accurate material properties for the soft tissue. Thus the goals of this research were to determine and compare the material properties of the soft tissue in the thigh and buttock regions in the seated, quadruped (a universally accessible position with the knee and hip articulations similar to the seated position), and prone positions. A custom indenter was designed to collect force and deflection data for the buttocks/proximal thigh, middle thigh, and distal thigh regions of twenty able-bodied individuals. The force and deflection data were converted into stress and stretch data, which were used to obtain parameters from an Ogden material model. Our results indicated that the prone position yielded significantly stiffer tissue properties than in the seated and quadruped positions for both males and females, meaning that position should be taken into account when obtaining material properties that are input into finite element models. Realistic material properties of the soft tissue will lead to better understanding of tissue injury risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call