Abstract

Diabetic retinopathy (DR) is a major cause of blindness in diabetic patients. Elevated glucose and vascular endothelial growth factor (VEGF) in retina can trigger many of the retinal vascular changes caused by diabetes and DR. Recently, bisphosphonates, antiosteoporosis drugs, have been reported to have anti-angiogenic effect by decreasing VEGF. Taurine has several biological processes such as osmoregulation and antioxidation in retina. Therefore, the purpose of this study is to clarify the regulation of taurine transport activity by high glucose concentration and the effect of inhibitors for VEGF function, bisphosphonates, on taurine transport under high glucose condition using TR-iBRB cell lines as an in vitro model of inner blood-retinal barrier (iBRB). As a result, by exposing TR-iBRB cells to high glucose for 48 h, [(3)H]taurine uptake was decreased continuously. [(3)H]Taurine uptake was increased significantly by pretreatment of alendronate and pamidronate compared with the values for high glucose. Increased [(3)H]taurine uptake by pretreatment of alendronate and pamidronate was significantly reduced by mevalonate pathway intermediates, geranylgeraniol (GGOH). In conclusion, taurine transport through the iBRB under high glucose condition can be regulated by bisphosphonates via mevalonate pathway. Therefore, we suggest that bisphosphonates could have the beneficial effects on DR by regulation of taurine contents in retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.