Abstract
In this study, the nonlinear dynamic analysis of the multi-mesh gear train with elastic bearing effect is investigated. The gear system includes the three rigid shafts, two gear pairs and elastic bearings. The stiffness and damper coefficient of elastic bearing are considered. The equations of motion of nonlinear time-varying system are derived using Lagrangian approach. The Runge-Kutta Method is employed to determine the system dynamic behaviors including the bifurcation and chaotic motion. The results show that the periodic motion, quasi-periodical motion and chaos can be excited with the elastic bearing effect. Especially, the results also indicate the dynamic response will go from periodic to quasi-periodical before the chaotic motion when the bearing stiffness is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.