Abstract
Adaptive ventilation mode (AVM) is a automated mode of mechanical ventilation. AVM is comprable to adaptive support ventilation (ASV). Both recommend a tidal volume (VT) and breathing frequency (f) combination based on lung mechanics, but AVM also automatically adjusts rise time and flow termination of pressure support breaths. How these added features of AVM affect VT and f recommendations compared to ASV is not clear. The present study compared these 2 modes in a test lung with obstructive and restrictive mechanics. The experiment was performed in a simulated lung model in which the compliance (C) and resistance (R) could be altered independently. The ventilatory parameters at different minute volumes (MinVol%) in AVM or ASV mode were recorded. When MinVol% was set at 100%, AVM provided a similar VT and f combination compared to ASV with decreasing compliance or increasing resistance. However, when MinVol% was increased to 250% simulating hyperventilation, for the severely obstructive lung (C60, R70) model, AVM provided a significantly higher f (26 ± 0.6 breaths/min vs 7.00 ± 0 breaths/min in ASV) and lower VT (240 ± 80 mL vs 491 ± 131 mL in ASV). The addition of automatic control of rise time and flow termination functions did not affect recommended ventilator settings in AVM in the noncompliant or obstructive lung when minute ventilation (V̇E) was low. At higher V̇E, AVM compared to ASV recommended a ventilatory strategy with lower VT and higher f. These results need to be validated in patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.