Abstract

The purpose of this study was to examine the effects of lactate, protons, inorganic phosphate, and ATP on myofibrillar ATPase activity. Myofibrils were isolated from carp (Cyprinius carpio L.) fast-twitch white muscle, and myofibrillar ATPase activities were assessed under maximal activating calcium levels (pCa 4.0) at 10 degrees C in reaction media containing metabolic profiles similar to those seen in fatiguing muscles. The Ca(2+)-activated ATPase activity was assessed by an ATP regenerating assay that coupled the myofibrillar ATPase to pyruvate kinase and lactate dehydrogenase. This assay allowed the effects of ATP, inorganic phosphate, protons, and lactate on myofibrillar ATPase activity to be assessed. The coupled assay was found to give similar myofibrillar ATPase kinetics, with the exception of higher maximal activities, to those seen with a standard end-point assay. Myofibrillar ATPase activity was depressed by 35% when ATP concentrations were lowered to 2.5 mM. Lowering ATP levels to 0.5 mM reduced the myofibrillar ATPase activities by 85%. Lactate had no effect on myofibrillar ATPase activities. Inorganic phosphate levels up to about 20 mM significantly decreased the myofibrillar ATPase activities, after which further increases in inorganic phosphate content had minimal effects. The changes in ATPase activities were related to total inorganic phosphate, not to the content of diprotonated inorganic phosphate. Myofibrillar ATPase activity was highest at pH 7.5 and lowest at pH 6.0. The interactive effects of low ATP, decreased pH, and high inorganic phosphate levels were not additive, giving similar decreases in activity to those produced by increased inorganic phosphate levels alone.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.