Abstract

Abstract Although data assimilation is now an established oceanographic technique, little work has been done on the interaction of the assimilation scheme and the physics of the underlying model. The way in which even a simple assimilation scheme (here nudging) can significantly alter the response of the model to which it is applied is illustrated here. Using analytic and semianalytic models, the assimilation of sea surface height, density, and velocity is studied. It is shown that the assimilation can act to alter the high inertia–gravity wave frequency to be the order of the Coriolis parameter, a result that is of relevance to the problems of initialization. The theory also predicts an optimum strength of nudging, normally dependent on wavelength, wave speed, and latitude, which can give convergence of the assimilation on a timescale as short as a day. The results are verified by identical twin experiments using a full primitive equation model, the Free Surface Cox Code, both in barotropic spinup (resul...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.