Abstract
Data are presented to show the effect of As overpressure on the diffusion of Mn in GaAs using four different Mn sources. These sources include solid Mn thin film deposited directly on the GaAs substrate and Mn vapors from pure Mn, MnAs, and Mn3As solids. In the circumstance for which a solid Mn film is used as the diffusion source, a nonuniform doping distribution and poor surface morphology is obtained due to a reaction between the Mn film and the GaAs matrix. The degraded surface consists of a layer of polycrystalline cubic alloy having a lattice constant of nearly 8.4 Å and a composition close to MnGa2 with a small amount of As. Of the remaining diffusion sources (Mn, MnAs, and Mn3As), only MnAs consistently produces a uniform doping distribution and smooth surface morphology. For diffusions at 800 °C, a uniform surface hole carrier concentration as high as 1020/cm3 can be obtained using MnAs as the source. The As overpressure is found to drastically alter the Mn diffusion profile, and Mn, like Zn, may diffuse in GaAs interstitial-substitutionally. Vapor from both the Mn and Mn3As solids degrade the GaAs surface. Mn3As, however, uncharacteristically degrades the surface more rapidly although the details of such are not well understood. With the presence of a high As overpressure, however, both surfaces of the Mn and Mn3As sources are converted to (Mn,As) compounds, the compositions being close to MnAs. High enough As overpressures are shown to completely suppress the GaAs surface degradation which is evident when Mn3As alone is used as the diffusion source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.