Abstract
Mechanical forces have been shown to affect stem cell behavior in a large array of ways. However, our understanding of how these mechanical cues may regulate the behavior of embryonic stem cells (ESCs) remains in its infancy. Here, we aim to clarify the effect of cell scattering on the regulation of Rho family GTPases Rac1 and RhoA as well as paxillin. Allowing ESCs to spread and scatter on a synthetically designed E-cadherin substratum causes phosphorylation of paxillin on consensus phosphorylation sites leading to activation of Rac1 and inactivation of RhoA. By culturing cells in presence of RhoA activator or growing cells to a highly confluent state reverses the effect of cell scattering phenotype. Knockdown of E-cadherin-adapter protein α-catenin revealed that it negatively affects paxillin phosphorylation and up-regulates RhoA activity in compact cellular aggregates. Collectively these results indicate that cell scattering might cause a conformational change of α-catenin limiting its capacity to inhibit paxillin phosphorylation that causes an increase in Rac1 activation and RhoA deactivation. Understanding how synthetically designed extracellular matrix affect ESC signaling through mechanical cues brings a new aspect for stem cell engineers to develop technologies for controlling cell function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.