Abstract

The effects of the argon gas flow rate and furnace pressure on the oxygen concentration in a transverse magnetic field applied Czochralski (TMCZ) silicon single crystals were examined through experimental crystal growth. A gas controller which had been proposed by Zulehner was used for this series of experiments. In the TMCZ gas-controlled crystals, a decrease in the oxygen concentration with a decrease in furnace pressure was found. A clear relationship between the oxygen concentration and the argon gas flow rate was not obtained due to the limited experimental conditions. The relationships between the oxygen concentration and the furnace pressure and the argon gas flow rate previously observed for Czochralski (CZ) crystals by a similar gas controller were confirmed by the present gas controller. The oxygen concentration changes in the TMCZ and the CZ crystals were analyzed in terms of the calculated flow velocity of the argon gas between the gas controller and the silicon melt surface. In contrast with the CZ gas-controlled crystals, the oxygen concentration was decreased with an increase in the flow velocity of argon gas in the TMCZ gas-controlled crystals. The surface temperature model and the melt flow pattern model which had been proposed in the previous report are discussed again in light of the present experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.