Abstract

BackgroundPneumoperitoneum-induced oxidative stress and organ injury are known to be associated with nitric oxide (NO) inactivation. Because arginase competes with NO synthase (NOS) for a common substrate, L-arginine, arginase inhibition may increase NO bioavailability. Therefore, we evaluated the ability of the arginase inhibitor, 2 (S)-amino-6-boronohexanoic acid (ABH), to attenuate pneumoperitoneum-induced decrease of NO bioavailability and lung injury.MethodsThirty rats were randomly divided into the following groups: 1) the PP-ABH group received a subcutaneous injection of ABH (5 mg/kg) 1 h before induction of pneumoperitoneum (insufflation to intraperitoneal pressure of 15 mmHg for 60 min); 2) the PP group received saline by subcutaneous injection 1 h before induction of pneumoperitoneum; and 3) the control group received saline by subcutaneous injection before a sham procedure with no gas insufflation. After desufflation, blood was collected to determine levels of plasma nitrite, NOS, inflammatory cytokines, and malondialdehyde, a marker of oxidative stress. Lung tissue was obtained for histological evaluation.ResultsWe found that plasma nitrite levels were lower in the PP group and higher in the PP-ABH group, compared with controls (P <0.01 and P <0.05, respectively). In the PP group, endothelial NOS activity was decreased and inducible NOS activity was increased compared with the PP-ABH and control groups. Malondialdehyde levels increased 3-fold in the PP group and 2-fold in the PP-ABH group compared with controls. Tumor necrosis factor-α, interleukin-6, and interleukin-1ß levels were elevated in the PP group compared to the control group, but the increase in cytokine production was attenuated or blocked in the PP-ABH group. Lung injury scores were 4.8-fold higher in the PP group and 2-fold higher in the PP-ABH group compared with controls (P <0.001 and P <0.01, respectively).DiscussionPneumoperitoneum decreases NO bioavailability and increases the inflammation cytokines, resulting in organ injuries. Inhibition of arginase activity could maintain NO bioavailability by attenuating pneumoperitoneum-induced changes in NOS activity. In addition, arginase inhibition attenuated the oxidative stress and inflammation and decreased the severity of lung injury caused by pneumoperitoneum.ConclusionsBy increasing NO bioavailability and suppressing oxidative stress and inflammation, pretreatment with an arginase inhibitor may protect against lung injury caused by pneumoperitoneum.

Highlights

  • Pneumoperitoneum-induced oxidative stress and organ injury are known to be associated with nitric oxide (NO) inactivation

  • By increasing NO bioavailability and suppressing oxidative stress and inflammation, pretreatment with an arginase inhibitor may protect against lung injury caused by pneumoperitoneum

  • The rats were randomly divided into three groups, each consisting of 10 rats: 1) the PP-ABH group received a subcutaneous injection of ABH (5 mg/kg) 1 h before induction of pneumoperitoneum; 2) the PP group received a subcutaneous injection of saline 1 h before induction of pneumoperitoneum; and 3) the control group received saline only

Read more

Summary

Introduction

Pneumoperitoneum-induced oxidative stress and organ injury are known to be associated with nitric oxide (NO) inactivation. Pneumoperitoneum required for laparoscopic visualization results in significantly decreased blood flow to intraperitoneal organs, which promotes anaerobic metabolism leading to lactic acidosis, oxidative stress, and postoperative manifestations, such as oliguria and elevated liver enzymes [2]. Postoperative decrease in organ function is the major cause of laparoscopy-associated morbidity and mortality [3]. Even short periods of pressure as low as 10–15 mmHg cause organ hypoperfusion, leading to postoperative tissue injury [4,5,6]. More serious concerns have been raised about robot-assisted surgery, because it requires steep or reverse Trendelenburg positions, which are associated with higher risks of organ damage due to changes in intraperitoneal pressure [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call