Abstract

Multi-oxide photocatalytic materials derived from metal organic frameworks (MOFs) are attracting widespread attention in recent years. The heterostructure originating from oxide–oxide junctions and nonmetal doping due to the combustion of organics from MOFs provide desirable properties to the photocatalytic material. In this study, the effects of annealing temperature on the material properties and photocatalytic activity of ZIF-8-derived ZnO/TiO2 thin films were investigated. XRD, XPS, and FTIR analyses confirmed the oxidation of ZIF-8 to ZnO and SEM analysis revealed the formation of a porous structure at the annealing temperature of 500 °C. UV–Vis analysis indicated that the band gap energy decreased from 3.23 to 2.04 eV with increasing annealing temperature. Photocatalytic methylene blue degradation experiments showed that the thin film annealed at 500 °C had higher activity than the films annealed at lower temperatures. The thin film annealed at 500 °C had more than two times the dye degradation efficiency of the film annealed at 400 °C (72% and 33%, respectively). This film was also active in the photocatalytic degradation of caffeic acid which is a colorless pollutant. The high photocatalytic activity of the thin film annealed at higher temperature was attributed to its narrower band gap energy, higher porosity, and more efficient electron–hole separation, which are due to the presence of heterostructure, nonmetal doping, and deficient zones formed by the oxidation of imidazole rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.