Abstract

Parylene C is one of the established encapsulation polymers for chronic implants. We investigated the influence of annealing Parylene C on its mechanical properties, chemical structure, and on the stability of Parylene C - platinum - Parylene C sandwich structures as a model of flexible neural interfaces in 0.9% saline solution. Films of Parylene C were annealed at 200°C, 300°C, 350°C, and 400°C in nitrogen atmosphere. Temperatures of 350°C and higher as well as annealing in air destroyed the Parylene C layers; films annealed at lower temperatures showed identical infrared spectra. Higher anneal temperatures produced increased values of elongation at break, tensile and yield strength, and yield strain while at the same time Young's modulus was shown to decrease. Crystallinity increased with annealing temperature. The structural stability of sandwich structures benefitted remarkably from annealing. Sandwich structures annealed at 300°C maintained their structural integrity during 320days in saline solution at 37°C and the insulation capability stayed consistently high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.