Abstract

The biomechanical response of normal and pathologic human abdominal aortic tissue to uniaxial loading conditions is insufficient for the characterization of its three-dimensional (3D) mechanical behavior. Planar biaxial mechanical evaluation allows for 3D constitutive modeling of nearly incompressible tissues, as well as the investigation of the nature of mechanical anisotropy. In the current study, 26 abdominal aortic aneurysm (AAA) tissue samples and 8 age-matched (>60 years of age) nonaneurysmal abdominal aortic (AA) tissue samples were obtained and tested using a tension-controlled biaxial testing protocol. Graphical response functions (Sun et al., 2003. J. Biomech. Eng. 125, 372–380) were used as a guide to describe the pseudo-elastic response of AA and AAA. Based on the observed pseudo-elastic response, a four-parameter exponential strain energy function developed by Vito (1990. J. Biomech. Eng. 112, 153–159) was used from which both an individual specimen and group material parameter sets were determined for both AA and AAA. Peak Green strain values in the circumferential ( E θ θ , max ) and longitudinal ( E LL , max ) directions under an equibiaxial tension of 120 N/m were also compared. The strain energy function fit all of the individual specimens well with an average R 2 of 0.95±0.02 and 0.90±0.02 (mean±SEM) for the AA and AAA groups, respectively. The average E θ θ , max at 200 N/m equibiaxial tension was found to be significantly smaller for AAAs as compared to AAs (0.07±0.01 versus 0.13±0.03, respectively; p < 0.01 ). There was also a pronounced increase in the circumferential stiffness for AAA tissue as compared to AA tissue, indicating a larger degree of anisotropy for this tissue as compared to age-matched AA tissue. We also observed that the four-parameter Fung-elastic model was not able to fit the AAA tissue mechanical response using physically realistic material parameter values. It was concluded that aneurysmal degeneration of the abdominal aorta is associated with an increase in mechanical anisotropy, with preferential stiffening in the circumferential direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.