Abstract
Animal models, particularly mice, are used extensively to investigate neurological diseases. Basic research regarding animal models of human neurological disease requires that the animals exhibit hall mark characteristics of the disease. These include disease specific anatomical, metabolic and behavioral changes. Nerve conduction velocity (NCV) is the predominant method used to assess peripheral nerve health. Normative data adjusted for age, gender and height is available for human patients; however, these data are not available for most rodents including mice. NCV may be affected by animal age and size, body temperature, stimulus strength and anesthesia. While the effects of temperature, age and size are documented, the direct and indirect effects of anesthesia on NCV are not well reported. Our laboratory is primarily concerned with animal models of diabetic neuropathy (DN) and uses NCV to confirm the presence of neuropathy. To ensure that subtle changes in NCV are reliably assayed and not directly or indirectly affected by anesthesia, we compared the effects of 4 commonly used anesthetics, isoflurane, ketamine/xylazine, sodium pentobarbital and 2-2-2 tribromoethanol on NCV in a commonly used rodent model, the C57Bl6/J mouse. Our results indicate that of the anesthetics tested, isoflurane has minimal impact on NCV and is the safest, most effective method of anesthesia. Our data strongly suggest that isoflurane should become the anesthetic of choice when performing NCV on murine models of neurological disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.