Abstract
The effects of enhanced (NH4 2SO4deposition on soil solution cation and anion concentrations and annualionic fluxes were followed using a standardised experimental protocolin six European coniferous forests with contrasting soil types, pollutioninputs and climate. Native soil cores containing a ceramic suction cupwere installed in the field, roofed and watered every two weeks withlocal throughfall or local throughfall with added(NH4)2SO4 at 75 kgNH4 +-N ha-1 a-1. Livingroot systems were established in half of the lysimeters.Untreated throughfall NH4 +-N deposition at thesites ranged from 3.7 to 29 kg ha-1 a-1Soil leachates were collected at two weekly intervalsover 12 months and analysed for volume, andconcentrations of major anions and cations. Increasesin soil solution NO3 - concentrations inresponse to N additions were observed after 4–9months at three sites, whilst one sandy soil with highC:N ratio failed to nitrify under any of thetreatments. Changes in NO3 - concentrationsin soil solution controlled soil solution cationconcentrations in the five nitrifying soils, withAl3+ being the dominant cation in the more acidsoils with low base saturation. The acidification responses ofthe soils to the (NH4 2SO4additions were primarily related to the ability of thesoils to nitrify the added NH4 +. pH and soiltexture seemed important in controllingNH4 + leaching in response to the treatments,with two less acidic, clay/clay loam sites showingalmost total retention of added NH4 +, whilstnearly 75% of the added N was leached asNH4 + at the acid sandy soils. The presenceof living roots significantly reduced soil solutionNO3 - and associated cation concentrations attwo of the six sites. The very different responses of the sixsoils to increased (NH4)2SO4deposition emphasise that the establishment of N critical loadsfor forest soils need to allow for differences in N storagecapacity and nitrification potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.