Abstract

The morphologies and the electron property of catalysts play the very important roles in the hydrogenation and dehydrogenation of liquid organic hydrogen carriers (LOHCs) such as dibenzyltoluene (DBT). The different morphologies and pore structures of γ-Al2O3 and MoxC doped γ-Al2O3 were synthesized as the supports for Pt catalysts. After analyzing of various characterizations and catalytic testing, it was found that the large surface area and the mesoporous structure of catalysts are beneficial to both DBT hydrogenation and perhydro-dibenzyltoluene (H18-DBT) dehydrogenation. The doping of MoxC promoted the formation of the smaller Pt nanoparticles and increased Pt dispersion. The forming Pt–Mo structure is beneficial to hydrogen spillover which suppress the formation of by-product. The high Pt dispersion of 0.1 wt% MoxC doped Pt/Al2O3 catalyst plays the positive roles in increasing H18-DBT dehydrogenation activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call