Abstract
Microglial over-activation plays a crucial roles during neuroinflammation. Aldose reductase (AR) is one of the enzymes that has been linked to inflammatory processes in several diseases. Therefore, inhibition of AR is considered as an important strategy to reduce inflammation. In the present study, Quercetin (Q) and monochloropivaloylquercetin (MCPQ) showed potent inhibition on AR expression and anti-neuroinflammatory effects in Amyloid β (Aβ) peptide (1–42) induced inflammatory process by inhibiting expression of inflammatory mediators from microglial cells. Furthermore, ablation of AR caused a significant reduction on COX2 expression in Aβ-induced neuroinflammation. Q and MCPQ suppressed COX2 mRNA and protein expression, which further resulted in downstream inhibition of prostaglandin E2 (PGE2) release in Aβ-induced neuroinflammatory process. Additionally, Aβ treatment resulted in activation of Mitogen Activated Protein Kinase (MAPK) and increased translocation of Nuclear Factor Kappa B (NFκB). Q and Sorbinil significantly reduced the activation of MAPK, at the same time Q, MCPQ and sorbinil decreased nuclear translocation of NFκB and diminished tumor necrosis factor (TNF)-α release in Aβ-induced neuroinflammation. The results suggested that AR is a probable target for treatment of neuroinflammation as well as Q and MCPQ could be effective agents for treating or preventing inflammation-related neurodegenerative diseases by AR inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.