Abstract

We investigate electromigration transport mechanisms in Cu and Cu alloy damascene conductors. We show that the drift velocity exhibits a dependence on microstructure. We find that Cu-Al alloys exhibit a small increase in grain boundary diffusion activation energy compared to pure Cu and a reduction in the diffusion prefactor for Cu/cap interfacial transport. Cu-silicide- and CoWP-cap layers are both effective in reducing the interfacial component of electromigration primarily through increases in interface diffusion activation energy. The Cu silicide cap also impacts grain boundary electromigration as a result of silicon doping of grain boundaries during processing, while the CoWP cap has no measurable impact on grain boundary transport. The positive impact of Al doping and metallic-cap layers on electromigration is additive, suggesting the potential for impurity doping and metallic caps to be combined to optimize for reliability across the geometry ranges encountered in circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.