Abstract

This paper provides and evaluates mass conservative, positive-definite, unconditionally-stable, and non-iterative numerical techniques for simulating the evolution of discrete, size- and composition-resolved aerosol and contrail particles in individual aircraft exhaust plumes in a global or regional 3-D atmospheric model and coupling the subgrid exhaust plume information to the grid scale. Such treatment represents a new method of simulating the effects of aircraft on climate, contrails, and atmospheric composition. Microphysical processes solved within each plume include size-resolved coagulation among and between aerosol and contrail particles and their inclusions, aerosol-to-hydrometeor particle ice and liquid nucleation, deposition/sublimation, and condensation/evaporation. Each plume has its own emission and supersaturation, and the spreading and shearing of each plume’s cross-section are calculated as a function of time. Aerosol- and contrail-particle core compositions are tracked for each size and affect optical properties in each plume. When line contrails sublimate/evaporate, their size- and composition-resolved aerosol cores and water vapor are added to the grid scale where they affect large-scale clouds. Algorithm properties are analyzed, and the end-result model is evaluated against in situ and satellite data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call