Abstract

BackgroundThe aim of our research was to determine the effects of chronic treatment with the atypical antidepressant agomelatine on the expression and activity of liver cytochrome P450 (CYP) in the chronic mild stress (CMS) model of depression, and to compare the results with those obtained for the first-generation antidepressant imipramine.MethodsMale Wistar rats were subjected to CMS for 7 weeks. Imipramine (10 mg/kg ip/day) or agomelatine (40 mg/kg ip/day) was administered to nonstressed or stressed animals for 5 weeks (weeks 3–7 of CMS). The levels of cytochrome P450 mRNA, protein and activity were measured in the liver.ResultsAgomelatine and imipramine produced different broad-spectrum effects on cytochrome P450. Like imipramine, agomelatine increased the expression/activity of CYP2B and CYP2C6, and decreased the CYP2D activity. Unlike imipramine, agomelatine raised the expression/activity of CYP1A, CYP2A and reduced that of CYP2C11 and CYP3A. CMS modified the effects of antidepressants at transcriptional/posttranscriptional level; however, the enzyme activity in stressed rats remained similar to that in nonstressed animals. CMS alone decreased the CYP2B1 mRNA level and increased that of CYP2C11.ConclusionWe conclude the following: (1) the effects of agomelatine and imipramine on cytochrome P450 are different and involve both central and peripheral regulatory mechanisms, which implicates the possibility of drug–drug interactions; (2) CMS influences the effects of antidepressants on cytochrome P450 expression, but does not change appreciably their effects on the enzyme activity. This suggests that the rate of antidepressant drug metabolism under CMS is similar to that under normal conditions.

Highlights

  • IntroductionCytochrome P450 (CYP) enzymes play an important role in the oxidative metabolism of endogenous substances (e.g. steroids, arachidonic acid, vitamins) and exogenous compounds including drugs

  • Cytochrome P450 (CYP) enzymes play an important role in the oxidative metabolism of endogenous substances and exogenous compounds including drugs

  • Imipramine tended to elevate the mRNA levels of both CYP1A1 and CYP1A2 in nonstressed rats, but decreased those levels in stressed animals (Fig. 1a)

Read more

Summary

Introduction

Cytochrome P450 (CYP) enzymes play an important role in the oxidative metabolism of endogenous substances (e.g. steroids, arachidonic acid, vitamins) and exogenous compounds including drugs. Conclusion We conclude the following: (1) the effects of agomelatine and imipramine on cytochrome P450 are different and involve both central and peripheral regulatory mechanisms, which implicates the possibility of drug–drug interactions; (2) CMS influences the effects of antidepressants on cytochrome P450 expression, but does not change appreciably their effects on the enzyme activity. This suggests that the rate of antidepressant drug metabolism under CMS is similar to that under normal conditions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call