Abstract
AbstractA fully coupled meteorology‐chemistry‐aerosol mesoscale model (WRF‐Chem) is used to assess the effects of aerosols on intense convective precipitation over the northeastern United States. Numerical experiments are performed for three intense convective storm days and for two scenarios representing ‘typical’ and ‘low’ aerosol conditions. The results of the simulations suggest that increasing concentrations of aerosols can lead to either enhancement or suppression of precipitation. Quantification of the aerosol effect is sensitive to the metric used due to a shift of rainfall accumulation distribution when realistic aerosol concentrations are included in the simulations. Maximum rainfall accumulation amounts and areas with rainfall accumulations exceeding specified thresholds provide robust metrics of the aerosol effect on convective precipitation. Storms developing over areas with medium to low aerosol concentrations showed a suppression effect on rainfall independent of the meteorological environment. Storms developing in areas of relatively high particulate concentrations showed enhancement of rainfall when there were simultaneous high values of convective available potential energy, relative humidity and wind shear. In these cases, elevated aerosol concentrations resulted in stronger updraughts and downdraughts and more coherent organization of convection. For the extreme case, maximum rainfall accumulation differences exceeded 40 mm. The modelling results suggest that areas of the northeastern US urban corridor that are close to or downwind of intense sources of aerosols, could be more favourable for rainfall enhancement due to aerosols for the aerosol concentrations typical of this area. Copyright © 2009 Royal Meteorological Society
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of the Royal Meteorological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.