Abstract

This study addresses the issues concerning the design of adverse condition warning systems (ACWS). ACWS are designed to sense adverse road and weather conditions as well as system states that can negatively impact driving performance leading to skids or accidents, and alert drivers to these conditions. In this case, an ACWS was designed to sense when a car was likely to skid. A virtual-driving environment was used to test two levels of alarm sensitivity (low and high) and two types of auditory alarm signal (Binary ON/OFF and Graded) along with a no-alarm control group. Dependent measures reflected driver performance, response to the alarm signal and trust in the alerting system. Results indicated that participants had fewer skids in the low sensitivity and graded alarm signal condition compared to some other alerting system configurations. Participants in the graded alarm signal condition also had a greater degree of lateral control over the vehicle. Additionally, trust was found to be lower for the high vs. low sensitivity alarm condition, indicating a reduction in trust when the alerting system activated more often, perhaps because participants did not feel the system was accurately reflecting a dangerous condition. This simulator-based research emphasizes the fact that while ACWS may provide an advantage in terms of vehicle control, characteristics of both the alerting signal and system configuration should be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.