Abstract

The effects of acute proximal basilar artery occlusion on blood flow, autoregulation and CO2 reactivity in four separate regions of the brain (cerebral cortex, thalamus, brainstem and caudal pons) were studied and compared in 30 anaesthetised baboons. Significant flow changes were seen in all areas of the basilar territory, even in instances where the posterior communicating artery was observed to be relatively large. Flow changes were also seen in regions of the brain remote from the basilar territory. Areas furthest from the collateral blood supply showed the largest changes in blood flow, as has previously been shown in the case of proximal middle cerebral artery occlusion. From this, one can predict that in surgery, the more rostral the occlusion of the artery, the safer the procedure should be. At normal blood pressure, while the collateral circulation to the brainstem and thalamus was adequate to maintain normal electrical function after basilar occlusion, the flow was totally inadequate to maintain autoregulation or CO2 reactivity in the basilar territory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.