Abstract

Conductive polymers commonly used as fillers to enhance electrical properties of composite’s system. However, the low conductivity performance of conducting polymers, namely poly(3,4-ethylenedioxythiophene): poly (4-styrene sulfonate) (PEDOT: PSS), constrains their utilization in the field of conductive textile technology in inventing an advanced textiles’ fabric. Maintaining the stability of impregnated PEDOT: PSS fabrics at the microscopic level remains doubtful and unclear. Nowadays, researchers are actively pursuing the introduction of secondary dopants into PEDOT: PSS dispersion to overcome this challenge. In this study, a conductive PEDOT: PSS fabric via immersion technique was prepared and its effects on conductivity upon doped-secondarily by two different dopants; hydrochloric (HCl) and p-toluenesulfonic (p-TSA) acids was revealed. The volume percentage (vol.%) of the secondary dopants (1, 3, 5, 7, 9 vol.%) were varied to find the optimal vol.% for getting the great value of conductivity of the doped PEDOT: PSS fabrics. These fabrics were then analyzed by using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR), Electrochemical Impedance Spectroscopy (EIS), and Scanning Electron Microscopy (SEM) to investigate their conductivity performances chemically. It is found that the conductivity values were affected by varying the strength of the acids. It is concluded, that the 7 vol.% and 5 vol.% of HCl and p-TSA, respectively, gave the highest electrical conductivity values of the PEDOT: PSS fabrics. These findings can be used to provide direction and guidance to researchers in advancing the fields of textiles, electronics and advanced materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call